

1

CHALLENGE-RESPONSE AUTHENTICATION

IK2206 – Internet Security and Privacy (Group 8)

Alexander Bea

abea@kth.se

Christoph Moser

chmo@kth.se

Thomas Galliker

galliker@kth.se

Abstract

Challenge-response is a procedure with the basic task of

proving the truth of information. The mechanism of

challenge-response is often used to authenticate

identities over unsecure networks. This report aims to

illustrate different approaches of how the principle of

challenge-response works, what the strengths and

weaknesses are and how the risk of a successful attack

against an authentication process can be diminished.

Besides identity checking, the principle of challenge-

response is also used in spam-filtering applications as

well as in special cases of lie detection. The main

finding of this report is that dictionary attacks are the

only serious way of attacking a challenge-response

authentication. The risk of a successful dictionary attack

can be reduced by using additional salt in the hash.

Keywords: Challenge, Response, Authentication, Spam

Filtering, Lie Detection, CAPTCHA, CHAP, Java.

1 Introduction

Ever since the means emerged to communicate through

networks, security protocols have had a growing and

increasingly important part to play. Private information

such as passwords are still today being sent out as

plaintext through the internet since secure

authentication is regarded as difficult to do and thus not

always used. However since there are numerous hackers

out there, there are also a wide range of automated

password sniffers in use on routers and other devices

that connect openly to the internet, and misuse the

information that they obtain. Thereby requirements that

establish trust between participants on a network is

more important in today’s booming IT culture than ever

before. Moreover how can we know that the persons we

are sending important and private information to are

really who they say they are? This can only be done

through providing an authentication factor, which is

form of evidence that proves the user’s identity.

In this paper we will present and discuss one type of

authentication called challenge-response authentication

whereby one party presents a challenge (e.g. series of

questions) and the other party is expected to provide

valid answers/responses that will be authenticated.

Furthermore we will cover the difference between

symmetric, asymmetric and message digest based

challenge-response authentication.

Thereby we will also try to establish its strengths and

weaknesses and provide protocol- and implementation

examples using this type of authentication. Our goal is

to describe the authentication variant, but also to try

answering questions like “Is the challenge-response

algorithm secure?” and “What techniques can be used

to strengthen security?”.

2 The Principle of Challenge/Response

Challenge-response is a method which has the purpose

to identify a communication partner. Figure 1 illustrates

how Bob proves the authenticity of Alice using a

challenge-response algorithm.

In challenge-response, one participant takes over the

part of the verifier (Bob) which initialises the process

by sending a challenge to the other party (Alice). A

challenge is a task that could be solved only by Alice

and the causer of the challenge because they own a

secret [7]. If Alice can respond the expected result to

Bob then Bob can be sure that he communicates with

Alice. The challenge-response mechanism (as

illustrated in the following sections) is a one-sided

authentication. If Bob receives the expected answer

from Alice then he is sure that he is talking to Alice but

Alice has no evidence that Bob is her communication

partner.

2.1 Identification with Symmetric Key

FIGURE 1: CHALLENGE-RESPONSE AUTHENTICATION

WITH SYMMETRIC KEY. (DERIVED FROM [7])

2

If the symmetric key identification approach is used,

both parties have to agree on a secret key in advanced.

1. Bob generates a random number “r” and

transmits it as challenge to Alice.

2. Alice encrypts the received number with the

agreed secret and sends back the result f(r).

3. Bob verifies the response by decrypting the

response with the agreed secret key.

It is important that the random number is used only

once. Otherwise an invader can memorise the answer

and reuse it. In that case the invader could act as Alice.

[7]

2.2 Identification with Message Digest

Challenge-response can make use of the irreversibility

of message digest functions. The main principle

remains the same while some properties change. If the

message digest approach is used, both parties have to

agree on a secret (e.g. a password) in advance. [6]

1. Bob generates a random number “r” and

transmits it as challenge to Alice.

2. Alice uses the secret and the received

challenge to a message digest function (e.g.

MD5). Usually some additional salt is used to

make the response more resistant against

attacks.

3. Bob can verify the response by calculating the

same message digest and comparing it with

Alice’s response.

2.3 Identification with Asymmetric Key

The challenge-response authentication could also be

realized with asymmetric keys.

FIGURE 2: CHALLENGE-RESPONSE AUTHENTICATION

WITH ASYMMETRIC KEY. (DERIVED FROM [7])

1. Bob generates a random number “r” and

transmits the random number as challenge to

Alice.

2. Alice decrypts the received number with her

private key and sends the result back to Bob.

This operation authenticates Alice, since only

she knows the (private) key to perform this

operation.

3. Bob can verify the response by encrypting the

response with Alice’s public key.

3 Strengths and Weaknesses

The following are the general strength and weaknesses
of challenge-response authentication and not of any

particular protocols. If a particular protocol is to be

considered there might be more or less strengths and

weaknesses to list. [1]

3.1 Strengths

 If a nonce and trusted intermediate is used, a

secure link can be established between sender

and receiver, which would protect against

attacks (e.g. playback).

 The receiver can by the use of CRA provide

evidence of his/her identity.

 Passwords are never sent out in plaintext, but

hashed.

 The data that is to be sent can be relatively fast

transmitted since it does not have to be

encrypted.

 Works well and simple for spam-filtering

(white- and blacklists).

3.2 Weaknesses

 Hackers can try to get the password hash of a

user and create their own challenge-response

by seeming as the real user.

 If the sender transmits the same challenge

more than once a hacker could eavesdrop on

the receivers hash from the first authentication

and send it him-/her-self.

 The risks of the mentioned attacks and

encryption tricking, man-in-the-middle and/or

reflection attacks can be diminished through

the use of e.g. a nonce and/or trusted

intermediaries (such as Certificate Authorities

or Key Distribution Centers).

 If only the sending party poses a challenge,

there is no mutual authentication.

4 Fields of Application

As described in chapter 2, challenge-response is mainly

used to authenticate people. In chapter 2 it is mentioned

that C/R is only a one-sided authentication, of course, it

is possible to extend the challenge-response

authentication so that both communication partners can

identify each other. In that case, both parties have to

send a challenge to each other. This is also called

mutual authentication.

The challenge-response principle is also used in some

other fields of application, such as spam filtering,

CAPTCHA and lie detection as well as for fake-proofs.

3

4.1 Spam Filtering

The main idea behind a challenge-response e-mail

system is that spammers will not take the time to

acknowledge the transmitted email message [9]. The

email system contains two lists of addresses: a blacklist

and a whitelist [9]. If a new email arrives containing a

sender which is listed in the blacklist, then the email is

blocked. On the other side, incoming emails with

whitelisted sender addresses are always delivered to the

recipient. If an email is received where the sender is

neither in the black- or whitelist, a challenge is sent to

the sender and the received message is queued

temporarily [9]. The message can be delivered to the

recipient if the sender answers the challenge correctly.

In addition the sender is added to the whitelist so that

prospective messages can be delivered directly.

4.2 CAPTCHA

CAPTCHA stands for “Completely Automated Public

Turing test to tell Computer and Humans Apart” and it

is used to ensure that for example an online form is

filled in by a human [10].

It protects webpages, especially online forms, against

bots which try to fill in forms automatically. A

CAPTCHA has to fulfil the following characteristics: A

computer must be incapable of reading the CAPTCHA

using OCR techniques but a human must still be able to

perceive the text.

CAPTCHA is usually used where a high risk of bot-

controlled website misuse is expected. Figure 3

illustrates a CAPTCHA form where a user has to write

off letters and digits from a distorted image that is part

of a webpage [10]Fehler! Verweisquelle konnte nicht

gefunden werden..

FIGURE 3: CAPTCHA IS DIFFICULT TO READ BY A

COMPUTER BECAUSE OF THE ANGLED LINE. (SOURCE: [10])

4.3 Lie Detection / Fake-Proof

The Challenge-response principle could also be used to

detect faked or manipulated data. As example it is

planned to use the challenge-response method for the

new European road pricing system. Security and

privacy are essential points which have to be considered

during the development of a new road pricing system.

The provider has to ensure that no location information

fall into wrong hands. Therefore, location points are

only stored locally on the on-board unit (OBU) of each

car. The OBU transmits only the distance and the

category of the road to the provider in order to create

the invoice. Using the challenge-response principle, the

provider is able to detect manipulated data. The

provider uses alternative sources to get information

about the location of vehicles, e.g. roadside-mounted

radar traps, national borders and number plate scanners.

If the provider has specific evidence about a car that

was at a particular area at a specific time, then the

provider requests the OBU to release the location of this

specific point of time. Thereby, the provider is able to

verify if the OBU contains genuine locations. In case of

a mismatch between the OBU data and the provider

data, further investigations are needed to reveal a

possible forgery. [11]

5 Challenge-Handshake Authentication Protocol

The Challenge-Handshake Authentication Protocol

(CHAP) is a concrete implementation of the challenge-

response algorithm. It is ratified in RFC1994 [997].

CHAP is a fundamental part of the Point-to-Point

Protocol (PPP), a data link protocol to establish private

connections between Internet nodes. PPP belongs to the

Internet protocol suite.

Although Microsoft’s proprietary versions of CHAP,

MS-CHAPv1 and MS-CHAPv2, enjoyed greater

publicity and broader acceptance, they are nowadays

considered as insecure [2], [3]. MS-CHAPv2 provides

mutual authentication between two peers. This is

basically done the same way as the one-way

authentication, only that both, the client and the server,

act as challenger.

MS-CHAP reached its popularity with the

commercialisation of WLAN (IEEE802.11). The

Extensible Authentication Protocol (EAP) is an

authentication framework that allows several

authentication protocols to be used. Many

authentication protocols used with EAP are based upon

the ideas of challenge-response authentication (e.g.

EAP-PSK, LEAP).

6 Challenge-Response in Java

As already stated in the explanation of the challenge-

response algorithm, an authentication process has to

pass through three simple steps. In this chapter the

relevant steps to perform a Message Digest-based

challenge/response authentication between two

http://recaptcha.net/learnmore.html

4

communication partners are roughly explained and

supported by simplified code snippets.

 Step 1: Generate Challenge

A client (let’s call it “Alice”) requests from her

authenticator (“Bob”) a challenge. A challenge is

nothing else than a randomly generated number1.

Our sample code makes use of the SecureRandom

class to generate a 1024 bit number.

SecureRandom sr =

SecureRandom.getInstance("SHA1PRNG");

byte[] bytes = new byte[1024 / 8];

return sr.nextBytes(bytes);

The issuer of the challenge, “Bob”, does two things

with the newly generated challenge: First he stores

it to a local variable and then he returns it to the

requester, Alice.

 Step 2: Calculate Response

As soon as the requester, Alice, gets the challenge,

she calculates a response code. This step is crucial

for the security of the algorithm and must be

implemented carefully to not allow attackers to

misuse possible weaknesses.

The challenge code that we got from the

authenticator is concatenated with Alice’s

username and password and then passed to a

message digest function. In this case we use MD5

as hashing algorithm. The output of hash functions

is an irreversible sequence of bytes. The more

components are used to calculate the response, the

more secure is the authentication. Using time

stamps as additional “salt” of the hash input makes

the response more resistant against dictionary

attacks but expects both involved systems to have

roughly synchronised clocks.

MessageDigest md =

MessageDigest.getInstance("MD5");

md.update((username + password + challenge +

timestamp).getBytes());

return md.digest();

Alice sends the response back to Bob if the

calculation is done.

1 It is actually a pseudo-random number (PRN) since

the generation of truly random numbers is hard to

achieve.

 Step 3: Validate Response

Bob is now in charge to check the correctness of

Alice’s response. Bob has all information to

calculate the response and checks whether it

matches: The challenge (since Bob saved it in a

variable), the username and password (since this

information is stored in a database). If Alice’s and

Bob’s calculated response match, the authentication

was successful.

if (Utils.generateResponse(username,

password,

challenge).equals(responseFromClient)) {

 //Login successful

} else {

 //Login failed

}

If no random challenge was used, an attacker could

listen for hashes of username/password

combinations on the network and use them to

illicitly gain access.

7 Conclusion

 Challenge-response algorithms provide an

authentication mechanism that is protected

against playback attacks since they use random

challenges.

 The principle of challenge-response can be

used in various other applications such as truth

tests, spam filtering, etc.

 The only serious way of attacking challenge-

response based authentication is to run a

dictionary attack.

 Strong passwords and salting of the hash helps

diminishing the success of a dictionary attack.

 The challenge (variable “r” in the examples of

chapter 2) must not be predictable in any way.

Long random strings are most appropriate.

 To mitigate the success likelihood of online

dictionary attacks as well as brute force

attacks, it is important that authentication

systems implement timeouts between

unsuccessful login attempts.

5

8 References

[1] P. Sjödin, “Authentication Protocols and Key Establishment”, Kungliga Tekniska högskolan, 2011

[2] B. Schneier, “Mudge, and D. Wagner, Cryptanalysis of Microsoft's PPTP Authentication Extensions (MS-

CHAPv2)”, http://www.schneier.com/paper-pptpv2.pdf, 1999, [last access: 24.11.2011]

[3] J. Eisinger, “Exploiting known security holes in Microsoft's PPTP Authentication Extensions (MS-CHAPv2)”,

http://penguin-breeder.org/pptp/download/pptp_mschapv2.pdf, 2001, [last access: 24.11.2011]

[4] W. Simpson, “PPP Challenge Handshake Authentication Protocol (CHAP)”,

http://tools.ietf.org/html/rfc1994, 1996, [last access: 24.11.2011]

[5] F. Bersani, H. Tschofenig, “The EAP-PSK Protocol: A Pre-Shared Key Extensible Authentication Protocol (EAP)

Method”, http://tools.ietf.org/html/rfc4764, 2007, [last access: 24.11.2011]

[6] R. Hafernik, “Challenge-Response Authentication in Java”,

http://roborant42.appspot.com/show/entry/4025, 2007, [last access: 24.11.2011]

[7] J. B. Knudsen, “Java Cryptography, Chapter 6: Authentication”,

http://oreilly.com/catalog/javacrypt/chapter/ch06.html, 1998, [last access: 24.11.2011]

[8] J. Swoboda, S. Spitz, M. Pramateftakis, “Kryptographie und IT-Sicherheit, Grundlagen und Anwendung“,

Vieweg+Teubner Verlag, 2008

[9] BareMetal.com Inc, “Introduction to our Challenge-Response e-mail system”,

http://domain-dns.com/docs/challenge_response.html, 2003, [last access: 24.11.2011]

[10] Carnegie Mellon University, “CAPTCHA: Telling Humans and Computers Apart automatically”,

http://www.captcha.net, 2010, [last access: 24.11.2011]

[11] M. Pouly, “Billing Systems”, University of Luxembourg, 2011

http://www.schneier.com/paper-pptpv2.pdf
http://penguin-breeder.org/pptp/download/pptp_mschapv2.pdf
http://tools.ietf.org/html/rfc1994
http://tools.ietf.org/html/rfc4764
http://roborant42.appspot.com/show/entry/4025
http://oreilly.com/catalog/javacrypt/chapter/ch06.html
http://domain-dns.com/docs/challenge_response.html
http://www.captcha.net/

